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Abstract. A regular method of deriving the goveming adiabatic Liauvillean on a lattice 
for a many-body system of locally and instantaneously recombining particles in reaction 
A+ 8 + O  is described. When the rate U ofthe recombination tends to infmity, U-m, the 
local reaction Liouvillean is shown to be replaced with a non-local operator involving 
renormalized matrix elements which are proportional to (slow) diffusive jump rates. 
Properties of the new Liouvillean are described. Quantum field formalism is employed. 

1. Introduction 

As is known, in kinetic theory initial conditions are formulated independently of 
governing equations. Computer simulations carried out with the aim of studying 
memory effects in hydrodynamics [I], chemical kinetics 121, cellular automata [3] have 
shown that kinetics is determined by large-scale initial density fluctuations, while 
small-scale noise has no essential effect. This fact has been predicted in [4] for 
unimolecular decay (A + 0) and by Zeldovich and Ovchinnikov [5] for bimolecular 
recombination A + B + 0. The qualitative picture of the phenomenon is well known 
and consists in a separation of reactants on later stages of the reaction and localization 
of the latter on interfaces. Initially, fluctuations give rise only to disturbances of density 
around average values. As the reaction proceeds, the average densities tend to zero 
and fluctuation effects become predominant. The larger the fluctuation domains the 
larger is the diffusive relaxation time (f = I * ) ,  so only long-living structures survive to 
the later stage providing memory about the initial fluctuations level. Due to the spatial 
separation of the components, the frequency of the chemically active collisions is 
supposed to reduce more slowly than in the case of the reaction-limited mode and the 
total number of particles decays as f-d’4 for dimensions d 4 and as I- ’  for d a 4  [2,5]. 

Considerable attention has been focused on theoretical fundamentals of fluctuation 
kinetics at intermediate elementary reaction rates U, 0 < U < w [Z, 5,6]. To get insight 
into the kinetics with arbitrary U and D,, the diffusion coefficient of U species, two 
limiting cases: D,+w and U+W should be considered. The first case presents no 
difficulties. If so, one is faced with the problem of investigating the regime of instan- 
taneous reaction, U-w, with stratification of components A and B from the very 
beginning (so-called strong coupling limit), while for finite U similar structures 
apparently occur at later stages. 

0305-4470/92/205283 + 13907.50 @ 1992 IOP Publishing Ltd 5283 
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An objective of this paper is to find an effective Liouvillean Le, describing 
many-body diffusion-limited recombination (DLR) in the case of a large adiabatic 
parameter r 

~ = u / D > > !  D = max{D,}. (1) 
In what follows, our method closely resembles the well known adiabatic elimination 
in the case of few degrees of freedom discussed in section 2.1. For the many-body 
case, a general scheme of the method based on the Dyson equation for the evolution 
operator is introduced in section 2.2. The scheme consists in derivation of an effective 
Lea for U -)cc starting with phenomenological many-body Liouvillean, L, with finite 
U. Exact solution for the particular case of recombination transitions without diffusive 
jumps is presented in sections 2.3 and 2.4. The operator L., described in sections 2.6 
and section 2.7 originates from renormalization of annihilation rate by elimination of 
fast transitions. Main properties of Le, are discussed in sections 2.6 and 2.7, its 
quasilinearity and action in a restricted Hilbert space being especially important. The 
procedure is extended to annihilation of particles of a single sort. In conclusion, a 
generalization of the method is presented to encompass sequential reactions. A 
hierarchy of timescales is explicitly assumed in this case. Application of Le, to 
dete-.-ixi::ic ::~~tme::: of '.icetic: is p:c:cxted i:: 2 f~!!a:ving pape: :o be :eFe::cd to 
as paper 11, where a transition is made from a many-body kinetics equation for 
probability distribution functions (PDF) to a deterministic equation for occupation 
numbers, nrj (density number). This transition is correct if each cell on the lattice 
contains many particles of any sort [7] 

(nvj)>>!. (2) 

The model obeying (1) and (2) imitates the behaviour of point-like particles with a 
finite radius of strong recombination. It should be emphasized that the two basic 
components resulting from the two large parameters (1) and (2) are important for the 
further analysis. 

2. Model formulation 

2.1. Preliminary remarks 

As a prelude to our derivation of an effective Liouvillean, we now start with a familiar 
lattice model for diffusion and recombination 

where h is a lattice Laplacian, n,; is occupation number, U = a, b refers to species, i 
being the cell index. There exist no methods for analytical solution Of (3) with arbitrary 
parameters D, and U. The reason for this is that recombination-induced changes 
cannot be distinguished from linear,diffusion changes. As is pointed out in [SI, in the 

giving a diffusion equation for excess density, z; = n.< - nb;, to average the solution of 
this equation with initial Gaussian statistics of zi ( f  = 0). An explicit solution for 
different diffusion coefficients is more difficult due to bilinearity in (3). 

Two strongly separated timescales exist on the DLR stage: the characteristic reaction 
time T,,= U-' and the diffusive jump time T ~ = ( D , ) - ' ,  with T ~ > > T ~ .  This relation 
enables one to classify all changes occurring in the system as fast and slow and to 

of di;iujiori coe;fii-ieiiis, Ea ~ Db, a Kiieaiiza;ion of the is ijosaib!c 
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reduce the number of variables describing the state of each cell by adiabatic elimination 
of the fast variables [8,9]. According to this principle, the total kinetics is represented 
by two distinct pathways, with- separated timescales, and analysed differently on 
different timescales. In our case, for times of the order r,, the diffusive degrees of 
freedom are ‘frozen’ since 0, << U, and the kinetics is governed only by local recombina- 
tion processes bringing the system to a local equilibrium (quasistationary) state: (i) 
nainbi =O. In other words, the particle density of A(B)  equals zero in the phase B(A) .  
After the fast reaction, on large timescales the system is governed only by a slow 
diffusive process, the property to be looked upon as condition (ii). According to 
(i), the system is separated to homogeneous regions (domains) while (ii) results in 
diffusive redistribution within each of them. The reaction of mutual annihilation 
A +  B-r 0 occurring at interfaces of domains is also limited by the rate of the diffusive 
jumps from their immediate neighbourhood. We stress that the kinetics inside the 
domains and, moreover, at the interfaces is governed by diffusive process linearly 
depending on density. These statements are surprising for interacting particles in the 
DLR system. At first sight, the interactions between particles, together with motions of 
interfaces caused by the process of overflow of a phase, seems to destroy the linearity 
of the kinetics. This, however, is not the case. It will be shown in I1 that motion of 
the interfaces is beyond the scope of the deterministic approximation. Also a contradic- 
tion will be resolved of bilinearity following from the interactions within cells, with 
the resulting equations being linear in the limit of infinite recombination rate U. 

In any case, the question of applicability of the linear approximation should be 
answered on the basis of a more general approach using a many-body treatment. The 
following discussion will be based on adiabatic analysis, which is a suitable tool to 
deal with medium stratification, with the purpose of finding an adiabatic governing 
operator. 

2.2. Liouvillean of the system 

As is well known [7,9], kinetics equations for density and, particularly (3) can be 
obtained in terms of the Markov technique of statistical mechanics based on coupled 
equations for many-body PDF F({nwj} ;  t ) .  The operator formulation of the kinetic 
equations [IO, 111 is more compact and effective, and based on quantization of the 
density field according to the same rules that are commonly used in quantum field 
theory [12]. In the quantum version of the theory, the Liouvillean includes diffusive 
and reactive terms [IO, 111, i.e. L= LD+ L,  where 

it.,) 

(4) 
L,  = U 1 (a,bi - r ~ . ~ n ~ , ) .  

The diffusive matrices, a;, are given explicitly in section 2.6. The fields ai and b, for 
A and B particles, respectively, satisfy the Bose commutation relations. For instance, 
for the field aj one has 

[a i ,a j ]=O [ a t ,  af]=o [a , ,  a:] = 8.. ‘J 

besides the fields {a t }  and {b , }  commute. Analogy to the Bose statistics follows from 
the fact that the field, say {ai}, produces an arbitrary particle number in any cell, and 
PDF is symmetric with respect to interchanging of particles. 
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The evolution of the state vector I F ( f ) )  is described by the equation 

(a,-L)IF(t))=O or lF(t))= G(f)IF(O)). ( 5 )  

It is more convenient to use the Laplace transform of the evolution operator G ( f )  = 
exp(fL) which is ruled by equation 

( w - L ) 6 =  1. ( 6 )  . 
Below we shall use the sign to refer to the Laplace transform with variable w 
conjugated to time f. If operator L did not contain the reaction, describing only 
unperturbed diffusive motion, the operator 6 = (o - LJ'  could be easily calculated 
in terms of diffusive modes. Then one could take into account the influence of the 
reaction by means of perturbation theory [IO: 111. This allows one to reproduce the 
Smoluchowski result [I31 for effective recombination rate 

(7) 

and to obtain the first concentration correction to K.  Unfortunately, a diagram technique 
for expansion in powers of U is rather cumbersome, since coefficients at each order 
of concentration have to be represented with infinite series in powers of U to renormal- 
ize the reaction rate. 

This situation is typical of strongly correlated systems, i.e. quickly interacting in 
the kinetic sense. Although some ideas of qualitative description of the distribution of 
particles in the DLR can be found in the theory of electron gas (spin fluctuations, spin 
waves and so on), a straightforward application of corresponding techniques to describe 

using operators projecting onto the subspace of non-intersecting configurations of A 
or E. This is done by choosing the interactions between particles, that is the reaction, 
as the main process. Then, by analysing the effect of the reaction, transformation can 
be made from the total Fock space of states to the restricted subspace of all configur- 
ations formed from single-species cells. That approach is similar to the analysis of the 
Hubbard model [14]. So, by choosing the weak intercell diffusive exchange of particles, 
LD, as a correction-to large local recombination, L,,  the Dyson equation for the 
evolution operator G follows in the form 

K = (D .  + Db) 

-l"--:--l -..I.--.- :-a.. A:=-..,.:-- TL- -aa..* - P I _  .."-" &:-- --_ La Ano--2L-.4 I-.. t,,aJJ,c.a, D)IJLG,,,> ,U,,> U,, U " ,111 LULLIGD. ,,,e G l l C C L  "L 3Cpa.aL1u" call uc: U C I C L l U C U  " J  

6 = 6,+ 6 , L D 6  where 6,= ( W  - LR)-'. (8) 

The operator 8, is diagonal in real configuration space, and related to corresponding 
operator 6 i  for each cell i. The latter can be easiiy determined for any U, since the 
description of kinetics within a cell is a standard problem of a reaction-limited process 
in a small volume with uniform density distribution [151. 

2.3. Single-cell problem 

The state of a cell is given by the probability 6 i  of finding the pair of occupation 
numbers n = [n,,, nb) .  The index i may be dropped here since the cell is chosen 
arbitrarily. The following shorthand notation will be used: m + p  = [mo + p ,  mb + p }  and 
S(m; n)  = &(ma, n.)S(mb,  nb)  indicates the Kronecker delta. If the cell initially was in 
the precise state n then by solving equation 
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it can be shown that the probability of having the state ( n  - p )  at later times is performed 
from Laplace inversion of 

According to stoichiometry of the recombination, the variable p fakes on integer values 
from 0 top* =min(n,, nh) .  At the end of the recombination, the cell will contain either 
{O, nb - n e }  particles in the case nb 3 n., or { n .  - nb, 0) if n. 2 nb. Hence, the probability 
of transition to the final state is given by the expression 

G n ( n - p , , n ) = w - l .  (11) 

Actually,jhe initial number of particles n is not well defined, and it is desirable 
to have for G, an expression that would correspond to transitions from an arbitrary :..:.:", ..t"t_ I%:̂  --,.I.,-... :" ̂ :...-.I.. ",.,..-A :- .I.̂ C..,.L L̂ :̂̂  
111.11111 JLLLLC. '1113 p " u u 1 G " "  1J "L"lp"y D U I I S "  111 tUF rub& ULIDLJ 

In) = In,, fib) = Ifl.)lfla) = (a+)"a(b+)"b/O). 
It is convenient to define here state In) differing from that commonly used in [12] by 
the normalization factor. The operators a' (a)  create (destroy) an A-kind state In.) 
according to the following rules: 

a+/n.)= In.+l) 

aln.)= n a l n a - l ) .  

We have defined that expansion coefficient F, of the exact vector state IF) on the basis 
In) means the probability of realization of the state In). The operator 6, is then 
expressed via transition operators in the Fock representation 

G, = E  Z: In -p)(G;R(n -P, n)(n!)-')(nI (12) 
P "  

where n !  = n,, !nhI, and / n  - p )  = (a+)"--P(b+)"b-P(0). Acting with the evolution operator 
&,,on arbitrary initial state ( k ) ,  one finds that, in agreement with (JO), the vector IF) 
is a linear combination of the states l k - p )  with the probabilities G ( k - p ,  k ) .  

Since we are interested in the case U >> 0, we are clearly a t  liberty to choose the 
asymptotic value U + 00. Equation (12) is then appreciably simplified since the transi- 
tion from any initial state occurs with suppressed probability to just final state. More 
exactly, the action with the fast reaction operator R on a mixed cell containing A and 
B particles, transforms it to the pure cell with component of either A or B depending 
on the type of particles surplus at time zero. The action with R on a single-component 
(pure) cell does not change its state, the empty cells can also be considered as 
single-component: both kinds are holes. These properties are evident from looking at  
the expression for GiR in the unfolded form 

- 1  
G , = - R  

0 

where 

{b"PIO)(Ola"b"+' + a+'~O)(O~a"+'b"} 
1 m 

(n!)-*1O)(01anb"+ 1 
D = l  n ! ( n + p ) !  

Here, terms with n = 0 represent transitions from the single-component cell. Although 
the form of the reaction operator R is quite complicated, it is sufficient, for our 
purposes, to know its action in the basis {Jk)} 

Rlk., ka)=/m., ma) 
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where either m. = 0, mb = kb - k., if kb 
to see that R is a non-Hermitian projection operator 

M G Rudavets and A G Rudauets 

k., or m. = k, - kb, mh = 0 if k. 3 kb. It is easy 

R~ = R. (14) 
This is due to the fact that only the first operator R in the left-hand side of (14) can 
change the state of the cell, while the second one leaves the state unchanged, 

2.4. Fast reaction on a lattice 

Total lattice state is determined as a product of cell states 

I W  = Il IkJ where I k,)  = I ka,, kb,) = (a:)’-fi(b:)’b~lO). 

As before, after fast recombination of a given initial configuration has occurred, only 
the final configuration remains with unit probability, i.e. with probability o-’ in 
Laplace-transform space. Hence, the following relation is fulfilled 

- 1  
G R = - R  R = n R ,  (15) 

0 

where each R, is determined in ( 1 3 b ) .  The general structure of R can be better seen 
in the decomposition 

where IC,) is an arbitrary particles’ arrangement {kri}, and IC,) is after recombination 
state formed from non-intersecting configurations of particles of A and B. 

2.5. Effective Liouvillean of diffusion-limited recombination 

Using expression (15) for G,, the Dyson equation (8) may be rewritten as 

(U - L e n ) 6  = R L., = RL,. (17) 

Two important physical features are contained in this equation. Comparing it to ( 6 ) ,  
we notice that the free term, R, in (17) plays the role of an initial condition, and 
bilinear combination RLD is a new Liouvillean. 

It can he shown that evolution corresponding to (17) takes place not in the total 
Fock space but in the subspace of single-component cells. Let A and B particles at 
the initial time, f = 0, be dispersed randomly on the lattice so that in some cells both 
types of particle coexist together. Then after f = U-’  = fO  (if U+co), the recombination 
destroys all less abundant particles in the mixed cells producing single-component 
ones. Thus at time zero plus, the state of the system will be described by the vector 
IF(+O))=R(F(O)) .  It corresponds to the right-hand side in (17). At later times, the 
total state vector will be determined by time-independent operator LcR 

I F ( [ ) )  = exp(tL)IF(+O)). (18) 

It is presented by a linear combination of terms with all possible combinations of 
diffusive jumps. All states of the system are generated by successive action with Le, 
on lF(+O)).  Each elementary act consists of a diffusive jump violating the single- 
component state of one of the cells followed by instant recombination restoring 
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homogeneous states. As a result, each state vector belongs to the subspace of non- 
intersecting configurations. Therefore at the DLR stage, the observed manifold is not 
total Fock space, in which cells may be occupied by particles of both kind, and that 
is realized under the conditions r=  1. In fact, it represents an 'effective' part of the 
space, which is formed by single-component cells only. Transitions between different 
configurations within this subspace are described by operator Le,. The latter has the 
following important property: matrix elements of the Le, are proportional to the 
coefficients D, because the transition rates caused by R are either unity (for transitions 
between states satisfying recombination stoichiometry) or zero. Hence the operator R 
does not bring additional factors to the rate of the elementary process. Returning to 
results of subsection 2.1, one concludes that LrR is governing adiabatic operator 
determining effective observable dynamics of the system. 

One may look at the action L., from the point of view of non-equilibrium thermo- 
dynamics. After fast irreversible recombination, the initial components, products, and 
buffer achieve an equilibrium state on each cell. From equations (14) and (18) the 
state vector I F ( f ) )  can be represented in the form 

showing that each subsequent diffusion transition displaces the system away from the 
equilibrium state prepared by the reaction. Hence L,, determines evolution of the 
system in locally equilibrium conditions. 

The operators R and Lo are written in different representations. The first one is 
presented in terms of single-site Hubbard transition operators [ 141 

In., nb)(mb, mal(ma!ma!)P X"'" = 

while L,  is expressed via quantization operators. There is a simple relation between 
R and LD which is based on the property of completeness of the basis {In)}, i.e. 
En X"." = 1, and multiplication rules X"."XN,M = S(m;N)X".', where 
In), Im), IN), IM) are single-site configurations. The Bose operators a, U +  and b, b f  can 
be expressed through X"," to give operators R and Lo which linearly and quadratically 
depend on X",", respectively. The total operator Len= R L D ,  as it turns out, has simpler 
form when presented in terms of field operators a; and bi. 

We postpone now derivation of Le, to subsection 2.1, and discuss the DLR kinetics 
for two adjacent cells isolated from the rest of the lattice. 

2.6. Difusion-limited reacfion for fwo cells 

The Liouvillean of the diffusive transitions L ,  = &+ LL reads 

L, = 1 [ D . ( a l -  a t ) a i  + D,(bT - bt)b,] (20) 
' j  

where D. and Db are the rates of diffusive jumps. Particle balance between two adjacent 
cells i and j = i +  e is described by the operator in square brackets in (20). For a system 
with immobile A particles, 0, = 0, and B particles moving from i to j = i + e, the action 
of the operator 

(21) 
depends on A particles being present in the cell j. As we know, starting with time 
I = +0, all particles on the lattice are single-component. This means that there are two 

LkGJ = RDb( bTbt - b t  b t )  
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possible ways to arrange particles between the cells: (1) cell i contains B particles, 
nb; B 1, and cell j contains A, nyj 2 1 ; (2) cell i has B and cell j has no A partiticles, no, = 0. 

M G Rudovets and A G Rudauets 

In the first case, operation with the first term CL;' in (21) on the state 

122) =Io.[, nbJlnaj, obj) (22) 
describes the motion of a single B particle from i to j followed by its destruction by 
recombination with a single A particle in j. As a result, the final state will contain one 
particle less in both cells than the initial state: 

(23) 123)= DbnbilOai, nbi - 1) Inaj -  1, ob,), 

State 123) could also be obtained by acting on the state 122) with operator 

Dbajbii? ;' (24) 

where iaj = .faj is the 'number-of-particles' operator for A particles in the cell j. With 
the use of this rather peculiar operator, (24), the factor naj has dropped out of the 
final expression (22). The same, for instance, might be accomplished by operator 
(1 + R,)-'aj instead of ajii;j; the results of various methods of evolution of configuration 
{n@<} are equivalent. The second term in (21) does not change the configuration 122). 
Since the latter consists of single-component cells, the total number of particles is also 
preserved under action with R, i.e. 

RDbbtb, = Dbbtb, = Db(afaj. ii;')btbi. (25) 
In the second equality in ( 2 5 ) ,  the identity (fin,/&) 1 is used under the condition 
n n j 2  1. Hence, the balance of transitions in the manifold {122)) provides the following 
Liouvillean which is equivalent to (21): 

(26) LL;j = Db( ajb, - af a, . b t  b;) ~&9(ii.,j) 

where 

is the characteristic (step) function in the Fock basis of occupation numbers that 
guarantees that equations (24) and (25) are valid in the case (1). 

The second case with zero numbers of A in the cell j corresponds to the manifold 
of states 

lad, nbi)loaj, nbj )  (28) 

with possible presence of B in the cell j, nbj 3 0. There is no recombination of particles 
in this case, and the right-hand side in (21) can be also expressed as 

L:GJ= Db(bfbi-  b+bi)S(iiaj). (29) 

The correlation operator presented in (29) 

8(i iOj)  = 1 - O(A,) (30) 

means that the state (28) can be changed only in the case n, =O. From equations (26) 
and (29). we find the total Liouvillean for particles jumping from i to j 

(31) L:;J= Db( ajbj - afa, . btb,) . e( G a j )  + Db( bTb, - bfb,)6( iiaj). 
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Usually, the direction of the jump is not known before-hand: from i to j or from 
j to i, The Liouvillean has to be written in symmetrical form to take into account both 
possibilities 

Laff = L:;J+ L g .  (32) 
Now we can predict the structure of the full two-cell Liouvillean describing transitions 
in the subspace of single-component cells for the case when both A and B species are 
mobile. It is formed with a sum of two terms analogous to Liouvillean described in 
(32) and symmetrical relative to permutations of the indices a and b. 

2.7. Effective Liouvillean on the whole lattice 

Now that the two-cell Le,, is defined, we can describe all the transitions on the lattice 
by making use of the fact that the total Liouvillean is given by the sum of equivalent 
two-cell Liouvillean, equation (32). For the B particles, we have 

Lt , ,=RLb=Dbx  R . l . ( b : + , - b T ) b , .  
r e  

The unit operator, 1, for each bond ( i ,  i + e )  should be expressed via correlation 
operators O ( & )  and S(fi,J (see equation (30)) in order to account for the fate of B 
particles jumping to the cell j = i + e  depends on whether B meets A in jth cell or not 

L t f f = D b  [RS(iim<+e) . (b:+,-bt)bj+Re(ri , j+,) '  (b :+ , -b t )b j ] .  ( 3 3 )  

Eliminating in (33) the transition operators R by using the same bosonization procedure 
that has been used earlier in the two-cell problem, we obtain expression for L:,, 
containing only the Bose fields 

!.e 

L:,,=x (RHS in (32)). (34) 
i e 

The correlation operators 0 and S in equations (31 )  and (32) are in the extreme right 
position. It is operators O and S that act on the state vector first to determine the way 
of the transition depending on the state of the configuration: either recombination or 
diffusive transition. 

The expression for Lz,, can be obtained by relabelling a G b. By so doing, one 
finally arrives at the explicit decomposition of the total Le,= LZ8+Lfff, i.e. 

[Ddb;+$-&t+&)  ' < c ; + e e ( G b i + e )  
i P 

+Db(a;+.bj - k j + e f i b i )  ' iii;+8(fiml+e) 

+Db(bT+eb;-6bi) ' S ( f i n j + = )  

+Da(aT+eaj-&J ' 6(fib<+e)l. (35) 

To illustrate that the rate is renormalized, it is convenient to compare Le, with the 
Liouvillean of non-local recombination in a kinetically-limited regime [ 10,111 

Lk U 2 (a;+.bj - &;+&). 
,,e 

Since the adiabatic Liouvillean Le,, is proportional to the diffusion coefficients and 
contains no parameter U, it mathematically expresses the idea that the recombination 
is diffusion limited. 
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The four following terms in the Liouvillean (35) uniquely specify aset of transitions 
on the manifold of single-particle states 

Ib)lO) 2 l0)lb) ( 3 6 ~ )  

1a)10)* to)lo). (368) 
The transition (36u) describes the jump of an A particle with rate D. to the adjacent 
cell containing a B particle; the transition (368) expresses the jump of A to an empty 
adjacent cell. Jumps of B particles are reflected in the channels (36p) and (36y). The 
state vector 10) represents state of empty cells. 

Some of the properties of Le, can be deduced immediately. Drop correlation 
operators 0 and 8 in (35). New Liouvillean L$R, acting on IF), forms vector IF') = LT,(F) 
linearly depending on occupation numbers of the current configuration {nVt}. From 
this point of view, LfR is similar to diffusion operator L,. The only effect of the reaction 
part of LTR is to change arguments of the state F({nr j } ;  1 ) .  It will be shown in I1 that 
it is the linear factors of the vector IF') rather than its arguments that result in the 
linear form of the kinetic equation for nmj( t )  in the deterministic approximation. Within 
the scope of the deterministic approximation, changings of the correlation functions 
do not occur. In other words, the value of e(n , ; )  for an arbitrary cell, which is either 
unity or zero depending on the preparation conditions, conserves as long as the criterion 
of deterministic approximation, equation (2), is fulfilled. The following two properties 
should be noted: (i) the transition rates in the balance equation for the PDF F({n-J;  t )  
are linear functions of the configuration {nwi]; (ii) in the deterministic approximation 
(2) the values of e (n , , ( t ) )  are conserved in time; both properties may be considered 
as reflecting the quasilinearity of L,, . 

At the end of this section, let us make some generalizations and discuss how the 
effective Liouvillean will be modified in the case of the fields ai and b; obeying Pauli 
statistics [ l l ]  

ctj = c;; = 0 for i = j ,  where caj = ai, cbi = bi 

~ c , ~ , c ~ l = ~ c ~ ; , c ~ j l = ~ c ~ ~ , c ~ J 1 = ~  for i # j .  
(37) 

The fields a, and b, are assumed to be independent, so that mixed cells would occur. 
Firstly, we notice that the scheme of the Liouvillean derivation obtained for the Bose 
statistics remains true for the Pauli case. It can be easily checked that the reaction 
operator for each cell equals Ri = 1 - fiaiiibibi + q b ; ,  since it obeys the following equalities 
Rlab)=IO),Rla)=la),  Rlb)=lb),RIO)=IO). Inasmuch as the occupation numbers are 
bounded to n,; =0, 1 ,  the correlation operators are simplified to 

e( ;,,j) = r7,, a(&,)= 1-&. 

As a result, the effective Liouvillean is given by 

L c ~ = X  [(D.+Db)(aj+,b,-ri,j+-.n'bi) 
i.e 

+ Db(b:+,- b t ) b j ( l  + D,(aT+. - a h ( l  - n ^ b j + e ) ] .  (38) 
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According to (38), an A particle jumps with the rate D. from ith cell to the adjacent 
cell j = i + e  when there is no B particle there, nbj = 0, all particles in the system being 
conserved in this case. If there is a B particle in the j th  cell, annihilation happens at 
the rate of the mutual diffusion coefficient (D. + 4). 

An additional comment can be made on the relation between the DLR and a 
single-species annihilation A + A + 0. Construction of the effective Liouvillean follows 
the same procedure as explained above, giving the final result 

L.,=2D, Z: [(I - a:+.a')nj4.a;. r?ai+.+(a~+.-af)~j.  ( 1  -&+<)I. (39) 
i.< 

Making use of the identities air?,,i = ai ,  a t2= 0, equation (39) is simplified and written 
in the form of bilinear operator [la] 

Le,q=2D. (a:+.-af+a;+.)a,. (40) 

The operator (40) for one-dimensional diffusion can be diagonalized, permitting one 
to obtain the precise solution for the total particle number (=tC"') at later stages of 
the reaction [16,17]. 

i= 

3. Summary and discussiou 

A regular method of derivation of adiabatic Liouvillean for a many-body system with 
fast recombination is proposed. The method presents a statistical analogue of the 
technique of adiabatic elimination of fast variables in the theory of Brownian motion 
[8,9], chemical kinetics [ 181, and stochastic systems [9]. The cornerstone assumption 
of the method is the essential difference between recombination and diffusive rates 

U >> D where D = max[Dr), 

It is this situation which takes place in the DLR. The inequality implies separation of 
timescales, i.e. rR= I /  U<< r0 = 1/D and, hence, distinction of recombinative and 
diffusive pathways. In the recombinative channel which is favoured at the initial stage, 
the particles rapidly and locally recombine according to the evolution operator R 
stated explicitly in (16). The diffusive pathway is unaffected on the timescale rR and 
is quenched after a delay of the order 7,. The main features of the DLR kinetics are 
presented in the infinite U model, for which the net result of both channels leads to 
effective dynamics with the many-body Liouvillean Le,= RL, on the manifold of 
single-component states. The kinetics is governed by the slow operator proportional 
to the coefficients D,, equation (35). 

Guided by our experience with a single reaction, we can guess L,, for problems 
involving a sequence of several reactions. Suppose that the reaction rates U, form a 
hierarchy of scales, jumps being the slowest process 

Us >> Us+! >>. . . > U: >> D. 

This implies the hierarchy of timescales, T,, = U;' ,  where p = 1,2 , .  . . , S, i.e 

Ts< T*-, <<. . .<< TI<< T D .  

Analysis of the system obeying the hierarchy begins with the fastest reaction occurring 
with the rate Us, while all other processes with larger relaxation time are 'frozen'. An 
initial point of the elapsed time is chosen arbitrarily, then after time rS the products 
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of the Sth reaction take part in the following reaction, p = S- 1, on the interval of 
time rs < t < rs + rs-, . Products of the latter reaction react over the next time interval 
rs-2 with rate U,_,, and so on. Having ordered the interactions, we removed the 
necessity for describing all intermediate transitions on the timescale rD and eliminated 
a considerable number of the internal degrees of freedom. For each reaction p, it is 
sufficient to know just the initial state of the components resulting from the previous 
reaction ( p  - 1) and the final state, which is assumed to he unique in the Fock basis. 
The analysis is correct if each product emerges only once in the chemical scheme of 
local reactions-no autocatalytic reactions. Denoting the operator of reaction in the 
p channel as R,, the total adiabatic Liouvillean that describe the evolution at scales 
rD is given by 

where Re,= R,Rs-I . . . R I  represents the net result of all reactions, each R,, has a form 
analogous to that given by (16). Application of the general adiabatic analysis is also 
possible to chemical kinetics [7,18], and hydrodynamics with a discrete velocity set 
[7,11, 191. The Liouvillean for the latter system closely resembles the Hamiltonian for 
multiband Hubbard-like models with a number of orbitals strongly coupled on sites. 

At the end of this section, we re-examine the recombination operator for the 
two-species system. It has been shown that the bosonization tool enables one to express 
the operator RL,  in terms of the correlation operators and 8(CrC). The trigger 
function of these operators is in choosing the way of changing the current state, i.e. 
either diffusive pathway of molecules (jumps) or recombinative pathway (jumps+ 
annihilation). The Liouvillean LsR provides the model for many-body analysis of the 
instantaneous recombination. However, it seems not to he exactly solvable, so deter- 
ministic approximation of kinetic equations that correspond to Leff will he derived and 
discussed in 11. 

M G Rudavets and A G Rudavets 

L a =  R e d m  
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